

函

Al-Enabled Spectrum Coexistence between Active Communications and Passive Radio Services: Fundamentals, Testbed and Data

https://sites.google.com/view/swift-ai-spectrum

 $Vuk\ Marojevic^1$, $Mehmet\ Kurum^2$, $Ali\ Gurbuz^3$, $Fatemeh\ Afghah^4$, $Nicholas\ Mastronarde^5$ 1. Mississippi State University 2. University of Georgia 3. North Carolina State University 4. Clemson University 5. University at Buffalo (UB)

Project Overview Radio astronomy (RA), remote sensing

The growth of active wireless systems often increases radio frequency interference (RFI) experience by passive sensors

This needs research on active and passive spectrum coexistence

(RS) and other passive sensing services are indispensable in modern society

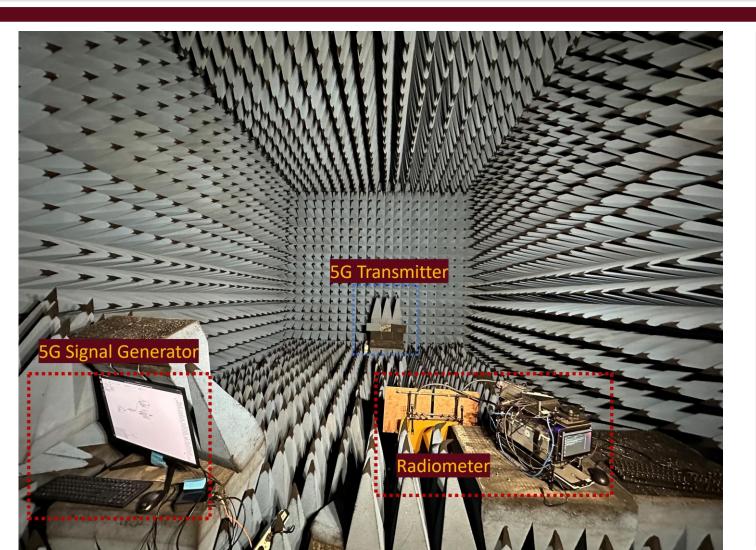
Active wireless technologies such as IoT, UAVs and 5G wireless networks are driving advances in key sectors such as healthcare, manufacturing, defense, and transportation

Task 1 (PHY-APP Layer) Task 2 (MAC-PHY Layer)

- 1.1 Al-Enabled RFI detection and mitigation
- 1.2 Sparsity-based RFI detection and mitigation utilizing existing datasets from SMAP and UWBRAD

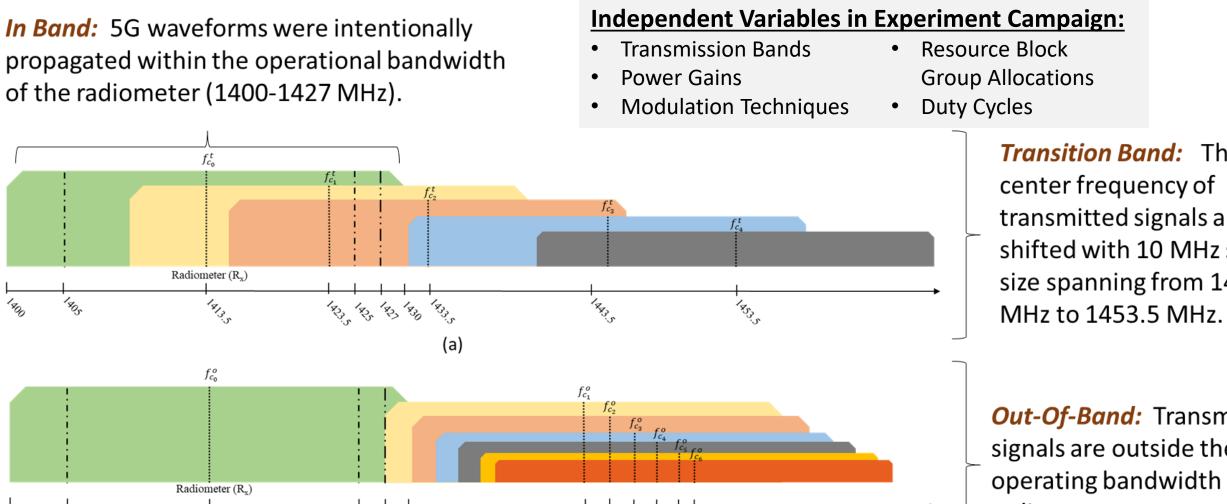
2.1 Sparse radio frames

by wireless channel virtualization


(1427-1525 MHz)

- 2.2 Deep Reinforcement learning for channel mapping
- 2.3 Al-based Active transmission optimization

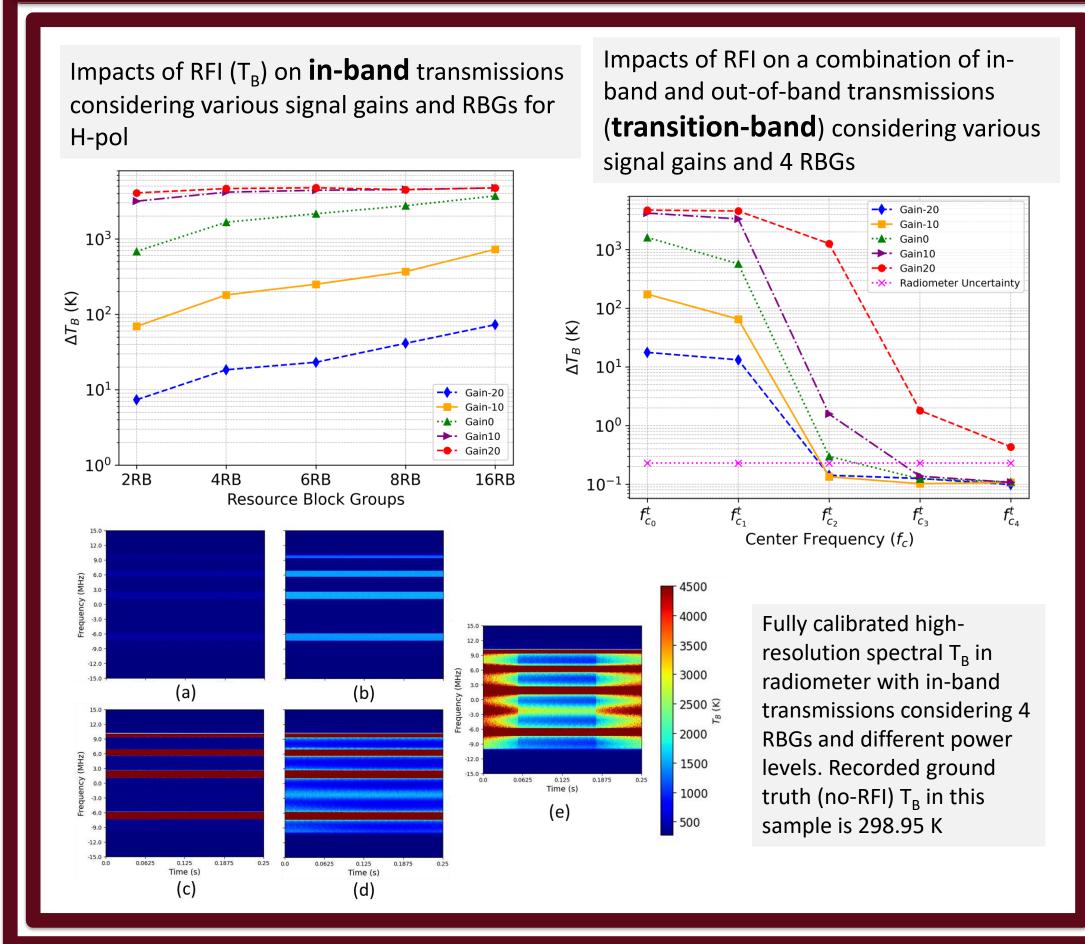
Task 3: Testbed

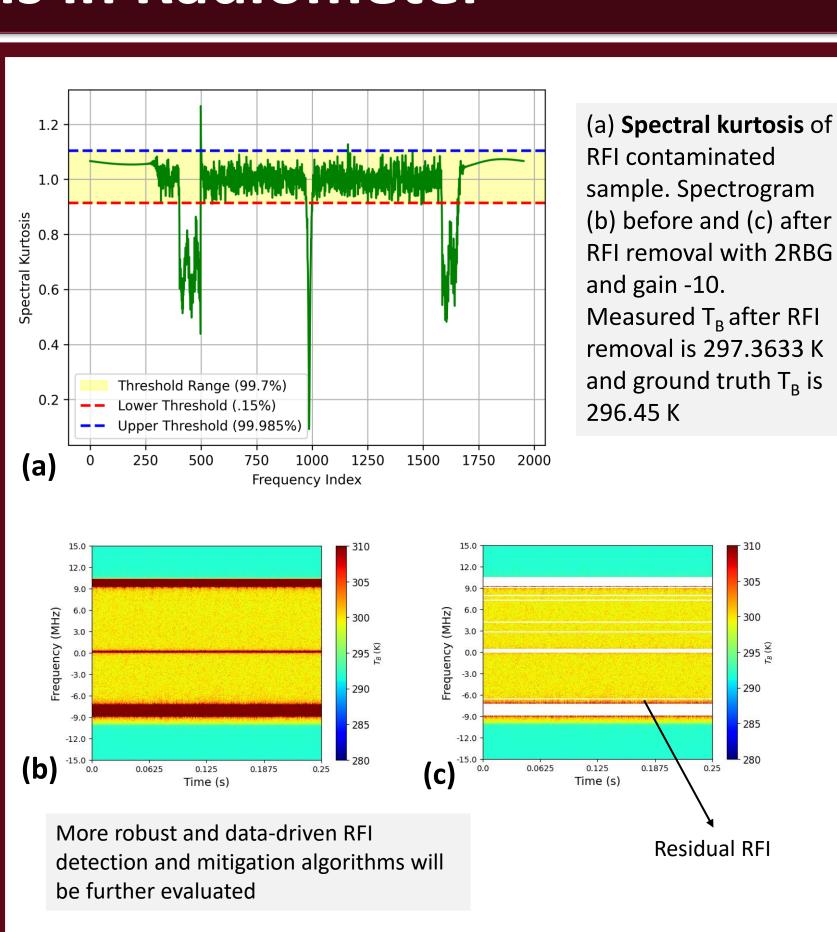

- 3.1 Ground and aerial system prototyping
- 3.2 Deployment of and installation of dronebased L-band radiometer
- 3.3 System emulator

Testbed Preparation

- Currently there is no publicly available dataset for active-passive co-existence research
- We have developed an open dataset and accompanying processing scripts for both **transmitted 5G samples** and radiometer measurements
- SDR-based digital processing unit enables acquisition of raw IQ samples at the radiometer
- > A customizable 5G NR system enables transmitting various wireless communication signals

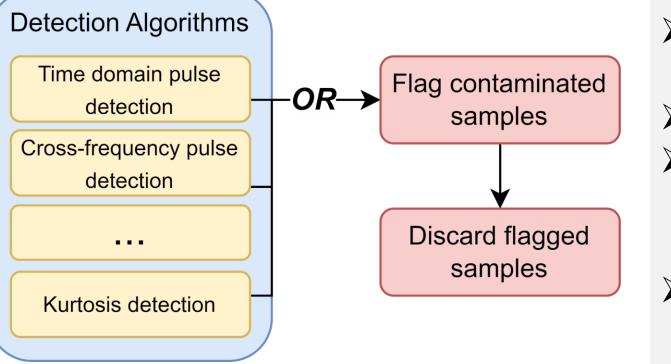
Experimental Scenario


Frequency (MHz)


Transition Band: The center frequency of transmitted signals are shifted with 10 MHz step size spanning from 1423.5

> Out-Of-Band: Transmitted signals are outside the operating bandwidth of the radiometer.

Open Source Dataset Raw IQ Samples Fully Calibrated (T_B) High-Dataset file structure for both transmitted 5G samples **Resolution Spectrogram** and radiometer received data Radiometer Received Data **Antenna Counts** Unfiltered → Unfiltered Unfiltered Unfiltered Spectrogram PSD → Filtered → Filtered V-90 Ref1 Dataset and Unfiltered → □ V-Scripts STFT → Filtered → Filtered GitHub Link T_B → Avg O H-Pol O v-Pol


Impact of 5G Waveforms in Radiometer

Autoencoder-Based RFI Mitigation for SMAP Passive Radiometer

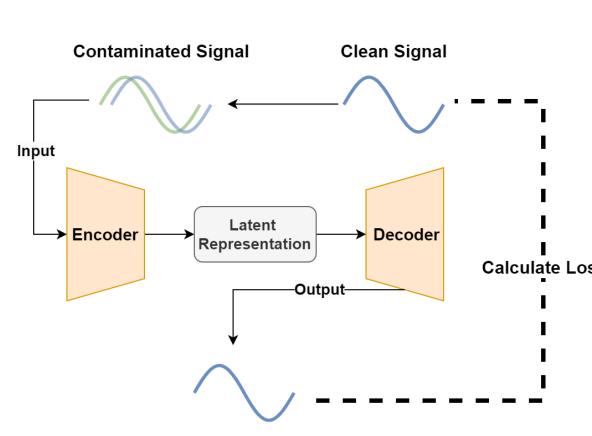
SMAP's interference mitigation flowchart

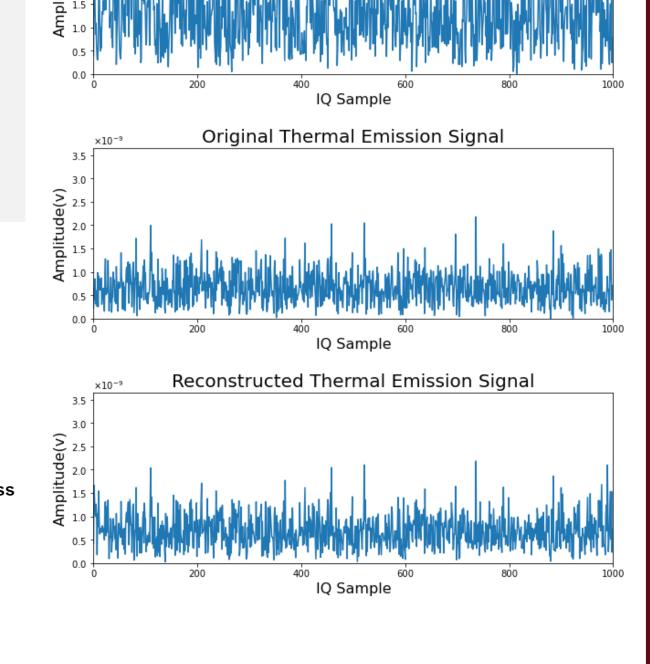
Lost information (discarded samples)

An Interference mitigation method

which reconstructs the information

from the contaminated signal instead of

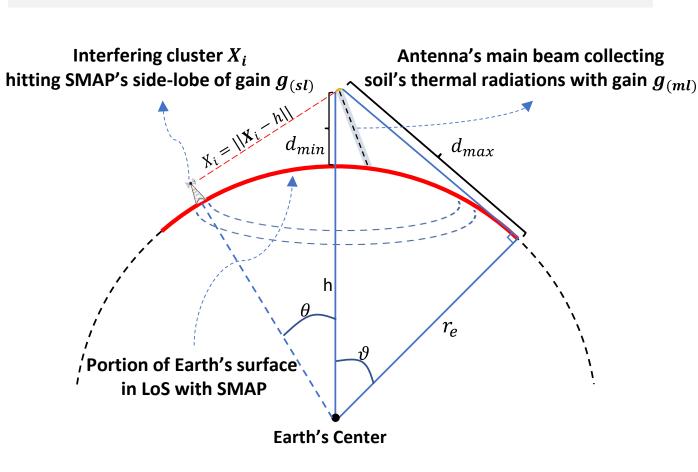

Too conservative


Handcrafted parameters

discarding is desired

Denoising Autoencoder (DAE) steps: The received contaminated signal is given as the input to the DAE The DAE outputs a reconstructed signal.

- > The reconstructed signal is compared with the clean signal and loss is calculated
- DAE reconstructs the clean signal from the contaminated signal



Aggregate RFI Analysis using Stochastic Geometry

- Goal: Model aggregate RFI induced on a spaceborne passive RS satellite from a large-scale terrestrial NextG network
- Use a **Thomas Cluster Process** to model the $\triangleright \lambda_{BS} = 50$, 100, 200 BSs per cluster. On distribution of cellular Base Stations (BSs)
- > Each cluster represents a dense urban area
- Assume all radiated power from BSs is directed at the satellite (worst-case analysis)
- Derive the **characteristic function** of aggregate RFI at the RS satellite Using the characteristic function, derive the
- statistical properties of the aggregate RFI Cumulants, average, variance, skewness,
- and kurtosis. Analyze impact of average cluster density and
- RFI must be kept below tolerable threshold τ = 1.3 Kelvin for NASA's SMAP satellite

number of active BSs in each cluster on the RFI

- $\succ \lambda_c = 1$ cluster (dense urban area) every 10000 km^2 . On average, 2500 clusters on Earth exposed to the satellite
- average, 125, 250, and 500 thousand BSs are exposed to SMAP
- $> g_{(sl)} = -60 \, \text{dB}$ (extremely low side-lobe gain of SMAP's antenna)

 $-\lambda_{BS}$ = 50 base stations

 $\lambda_{\rm pc}$ = 100 base stations

 $\lambda_{\rm RS}$ = 200 base stations

Broader Impacts

ICC 2024 (Workshop – June 13, 2024) **Spectrum Sharing Technology for Next Generation Communications** https://www.nist.gov/news-events/news/ieee-icc-2024-3rdworkshop-spectrum-sharing-technology-next-generation

4th Buffalo Day for 5G and Wireless Internet of Things (Panel – Nov. 18, 2022) Active-Passive Spectrum Coexistence Moderator: Alhussein A. Abouzeid (NSF), Panelists: C. Chen (UVA), R. Berry (Northwestern), D. Pados (FAU), M. Kurum (MSU)

Education (Graduate Course – Fall 2022, Spring 2024) **ECE 8990 - Microwave Remote Sensing** Instructor: Mehmet Kurum

Collaborating with NASA (Research Seminar – Jan. 23, 2023) **Enabling Space Exploration by Autonomous Smart Microwave Radiometers Onboard Small Satellites** Speaker: Mehmet Ogut (NASA Jet Propulsion Laboratory)

IGARSS 2023 (Community Contributed Session – July 16, 2023) **Coexistence of Communication and Passive Sensing Technologies** Organizers: Mehmet Kurum and Ali Gurbuz

Research Experiences for Undergraduate Students (REU) **REU at MSU:** Supported students: 6 **CSTEP at UB:** Supported students: 1 (Summer 2023 – present) Sharing Data and Research Outcomes Through Website (Fall 2021)

https://sites.google.com/view/swift-ai-spectrum/home

List of Publications

- A. M. Alam et al., "A Physical Testbed and Open Dataset for Passive Sensing and Wireless Communication Spectrum Coexistence," in IEEE Access, vol. 12, pp. 131522-131540, 2024, doi: 10.1109/ACCESS.2024.3453774 Ahmed Manavi Alam, Md Mehedi Farhad, Walaa Al-Qwider, Ali Owfi, Mohammad Koosha, Nicholas Mastronarde, Fatemeh Afghah, Vuk Marojevic, Mehmet Kurum, Ali Gurbuz, March 31, 2024, "Dataset for Spectrum Coexistence in Passive Sensing and Wireless Communication", IEEE Dataport, doi: https://dx.doi.org/10.21227/968t-td34. [Public Dataset] A. M. Alam, M. M. Farhad, M. Kurum and A. Gurbuz, "An Advanced Testbed for Passive/Active Coexistence Research: A Comprehensive Framework for RFI Detection, Mitigation, and Calibration," 2024 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM), Boulder, CO, USA, 2024, pp. 280-280, doi: 10.23919/USNC-
- URSINRSM60317.2024.10464436 A. M. Alam, M. Kurum, M. Ogut and A. C. Gurbuz, "Microwave Radiometer Calibration Using Deep Learning With Reduced Reference Information and 2-D Spectral Features," in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 17, pp. 748-765, 2024, doi: 10.1109/JSTARS.2023.3333268 W. Al-Qwider, A. M. Alam, M. Mehedi Farhad, M. Kurum, A. C. Gurbuz and V. Marojevic, "Software Radio Testbed for 5G and L-Band Radiometer Coexistence Research," IGARSS 2023
- 2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 2023, pp. 596-599, doi: 10.1109/IGARSS52108.2023.10283002 M. M. Farhad, S. Biswas, A. M. Alam, A. C. Gurbuz and M. Kurum, "SDR Based Agile Radiometer with Onboard RFI Processing on a Small UAS," IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 2023, pp. 4368-4371, doi: 10.1109/IGARSS52108.2023.10282140.
- A. M. Alam, M. Kurum, and A. C. Gurbuz, "Radio Frequency Interference Detection for SMAP Radiometer Using Convolutional Neural Networks," in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 15, pp. 10099-10112, 2022. A. M. Alam, A. C. Gurbuz, and M. Kurum, "SMAP Radiometer RFI Prediction with Deep Learning using Antenna Counts," 2022 IEEE International Geoscience and Remote Sensing
- Symposium (IGARSS), Kuala Lumpur, Malaysia, 2022, pp. 8016-8019 M. M. Farhad, A. M. Alam, S. Biswas, M. A. S. Rafi, A. C. Gurbuz and M. Kurum, "SDR-Based Dual Polarized L-Band Microwave Radiometer Operating from Small UAS Platforms," in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, doi: 10.1109/JSTARS.2024.3394054 10. Walaa H Algwider, Ajaya Dahal, and Vuk Marojevic, "Software Radio with MATLAB Toolbox for 5G NR Waveform Generation", Proc. IEEE DCOSS 2022 - Test and Evaluation of Programmable
- Networks (TEPN) 2022 workshop, Marina Del Rey, Los Angeles, CA, US, May 2022. 11. M. Koosha and N. Mastronarde, "Opportunistic Temporal Spectrum Coexistence of Passive Radiometry and Active Wireless Networks," 2022 IEEE Western New York Image and Signal Processing Workshop (WNYISPW), Rochester, NY, USA, 2022, pp. 1-4.
- M. Koosha and N. Mastronarde, "Minimizing estimation error variance using a weighted sum of samples from the soil moisture active passive (SMAP) satellite", 2023 IEEE International Geoscience and Remote Sensing Symposium, July 2023. 13. Koosha, Mohammad, and Nicholas Mastronarde. "Spectrum Coexistence of Satellite-borne Passive Radiometry and Terrestrial Next-G Networks." arXiv preprint arXiv:2402.08002 (2024).
- 14. A. Owfi, F. Afghah, and J. Ashdown, "Meta-Learning for Wireless Interference Identification", IEEE Wireless Communications and Networking Conference (WCNC), 2023. 15. A. Owfi and F. Afghah, "Autoencoder-Based Radio Frequency Interference Mitigation for SMAP Passive Radiometer," IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 2023, pp. 6783-6786, doi: 10.1109/IGARSS52108.2023.10281939